45 research outputs found

    Differences in speciation progress in feather mites (Analgoidea) inhabiting the same host: the case of Zachvatkinia and Alloptes living on arctic and long-tailed skuas

    Get PDF
    Recent molecular phylogenetic analyses have revealed that some apparently oligoxenous feather mite species are in fact monoxenous cryptic species with little morphological differentiation. In this study we analyzed two species, Zachvatkinia isolata (Avenzoariidae) and Alloptes (Sternalloptes) stercorarii (Alloptidae) which prefer different parts of the plumage of two sister species of birds: arctic skua (Stercorarius parasiticus) and long-tailed skua (S. longicaudus) breeding on tundra in the High Arctic archipelago of Svalbard. Given that there are no reports about hybridization events between the host species, we expected that both skuas would have a species-specific acarofauna. The genetic distances among DNA-barcode sequences (COI and 28S rDNA), phylogenetic tree topologies, and haplotype networks of the COI sequences of mites suggested extensive gene flow in Z. isolata between and within populations inhabiting both skua species, whereas the Alloptes populations were host specific and sufficiently genetically separated as to warrant species-level status. The discrepancy in the genetic structure of Alloptes and Zachvatkinia populations suggests frequent but transient contacts between the two skua species in which the probability of mite exchange is much higher for Zachvatkinia, which is present in high numbers and inhabits exposed parts of primary flight feathers, than for the less abundant Alloptes that lives primarily in more protected and inaccessible parts of the plumage. We discuss the possible nature of these contacts between host species and the area(s) where they might take place. The star-like structures in the haplotype network as well as high haplotype diversity and low nucleotide diversity observed in Z. isolata are concordant with the known dispersal strategy of feather mites: vertical colonization of new host individuals followed by rapid growth of founder populations

    Global radiation in a rare biosphere soil diatom

    Get PDF
    Soil micro-organisms drive the global carbon and nutrient cycles that underlie essential ecosystem functions. Yet, we are only beginning to grasp the drivers of terrestrial microbial diversity and biogeography, which presents a substantial barrier to understanding community dynamics and ecosystem functioning. This is especially true for soil protists, which despite their functional significance have received comparatively less interest than their bacterial counterparts. Here, we investigate the diversification of Pinnularia borealis, a rare biosphere soil diatom species complex, using a global sampling of >800 strains. We document unprecedented high levels of species-diversity, reflecting a global radiation since the Eocene/Oligocene global cooling. Our analyses suggest diversification was largely driven by colonization of novel geographic areas and subsequent evolution in isolation. These results illuminate our understanding of how protist diversity, biogeographical patterns, and members of the rare biosphere are generated, and suggest allopatric speciation to be a powerful mechanism for diversification of micro-organisms

    Future directions and priorities for Arctic bryophyte research

    Get PDF
    The development of evidence-based international strategies for the conservation and management of Arctic ecosystems in the face of climate change is hindered by critical knowledge gaps in Arctic floristic diversity and evolution. Particularly poorly studied are the bryophytes, which dominant the vegetation across vast areas of the Arctic, and consequently, play an important role in global biogeochemical cycles. Currently, much of what is known about Arctic floristic evolution is based on studies of vascular plants. Bryophytes, however, possess a number of features, such as poikilohydry, totipotency, several reproductive strategies, and the ability to disperse through microscopic diaspores, which may cause their responses to Arctic environments to differ from those of the vascular plants. Here we discuss several priority areas identified in the Arctic Council's ‘Arctic Biodiversity Assessment’ that are necessary to illuminate patterns of Arctic bryophyte evolution and diversity, including dispersal, glacial refugia, local adaptation, and ecological interactions within bryophyte-associated microbiomes. A survey of digitally available herbarium data archived in the largest online aggregate, GBIF, across the Arctic to boreal zones, indicates that sampling coverage of mosses is heterogeneous, and relatively sparse in the Arctic sensu stricostricto. A coordinated international effort across the Arctic will be necessary to address knowledge gaps in Arctic bryophyte diversity and evolution in the context of ongoing climate change

    Survivors and colonizers: Contrasting biogeographic histories reconciled in the Antarctic freshwater copepod Boeckella poppei

    Get PDF
    Two main hypotheses have been proposed to explain the contemporary distribution of Antarctic terrestrial biota. We assess whether the current distribution of maritime Antarctic populations of the freshwater copepod Boeckella poppei is the result of (1) a post-Last Glacial Maximum (LGM) colonization, or whether (2) the species survived in regional glacial refugia throughout the LGM and earlier glaciations. Using 438 specimens from 34 different sampling sites across Southern South America, South Georgia, South Orkney Islands, South Shetland Islands and the Antarctic Peninsula, we analysed mitochondrial and nuclear sequences to uncover patterns of genetic diversity and population structure. We also performed median-joining haplotype network, phylogenetic reconstruction and divergence time analyses. Finally, we evaluated past demographic changes and historical scenarios using the Approximate Bayesian Computation (ABC) method. Our data support the existence of two clades with different and contrasting biogeographic histories. The first clade has been present in maritime Antarctica since at least the mid-Pleistocene, with the South Orkney Islands the most likely refugial area. The second clade has a broader distribution including southern South America, South Georgia, South Shetland Islands and the Antarctic Peninsula. The ABC method identified long-distance dispersal (LDD) colonization event(s) from southern South America to South Georgia and the maritime Antarctic after the LGM deglaciation, supporting more recent colonization of Antarctic locations. The current Antarctic and sub-Antarctic distribution of B. poppei is likely derived from two independent biogeographic events. The combination of both (1) post-LGM colonization from southern South America and (2) longer-term persistence in in situ regional refugia throughout glacial periods challenges current understanding of the biogeographic history of Antarctic freshwater biota. Re-colonization of ice-impacted Antarctic areas would have occurred following a LDD and Establishment model, pointing to the existence of possible post-dispersal barriers, despite widely assumed high passive dispersal capacity in freshwater invertebrates

    The “Trojan horse” strategy: Seed fungal endophyte symbiosis helps to explain the invasion success of the grass, Poa annua, in Maritime Antarctica

    Get PDF
    Aim Poa annua L. (annual bluegrass) is presently the sole invasive vascular plant species to have successfully established in Maritime Antarctica, where it poses a significant conservation threat to native plant species. However, the reasons for its success in the region have yet to be established. Here, we determined whether the invasiveness of P. annua, and its competitiveness with the native Antarctic hairgrass Deschampsia antarctica, is influenced by symbioses formed with seed fungal endophytes, and whether plants derived from seeds from four global regions differ in their performance. Locations Four regions (Maritime Antarctica, sub-Antarctica, South America and Europe). Methods Endophyte frequency was measured in P. annua seeds collected from the four regions. The germination, survival, biomass accumulation, flowering and competitiveness with D. antarctica of P. annua plants grown from endophyte-uncolonised and uncolonised seeds was determined in the laboratory. The effects of endophytes on P. annua seed germination and survival and seedling osmoprotection were also assessed in the Maritime Antarctic natural environment using locally-sourced seeds. Results Endophytes were at least twice as frequent in seeds from Maritime Antarctica than in those from other regions. A higher proportion of endophyte-colonized seeds germinated and survived than did uncolonised seeds, but only when they originated from Maritime Antarctica. Seed endophytes increased the competitiveness of P. annua with D. antarctica, but only for plants grown from Maritime Antarctic seeds. In the field, endophyte-colonized seeds from Maritime Antarctica germinated and survived more frequently than uncolonised seeds, and osmoprotection was higher in seedlings grown from colonized seed. Main Conclusions The findings indicate beneficial effects of seed endophytes on invasion-related traits of P. annua, such as survival, germination success and flowering. Together with vegetative and reproductive traits facilitating the colonization process, the seed-fungal endophyte symbiosis can be invoked as an important factor explaining the invasiveness of P. annua in Maritime Antarctica

    Multiple late-Pleistocene colonisation events of the Antarctic pearlwort Colobanthus quitensis (Caryophyllaceae) reveal the recent arrival of native Antarctic vascular flora

    Get PDF
    Aim: Antarctica's remote and extreme terrestrial environments are inhabited by only two species of native vascular plants. We assessed genetic connectivity amongst Antarctic and South American populations of one of these species, Colobanthus quitensis, to determine its origin and age in Antarctica. Location: Maritime Antarctic, sub‐Antarctic islands, South America. Taxon: Antarctic pearlwort Colobanthus quitensis (Caryophyllaceae). Methods: Four chloroplast markers and one nuclear marker were sequenced from 270 samples from a latitudinal transect spanning 21–68° S. Phylogeographic, population genetic and molecular dating analyses were used to assess the demographic history of C. quitensis and the age of the species in Antarctica. Results: Maritime Antarctic populations consisted of two different haplotype clusters, occupying the northern and southern Maritime Antarctic. Molecular dating analyses suggested C. quitensis to be a young (<1 Ma) species, with contemporary population structure derived since the late‐Pleistocene. Main conclusions: The Maritime Antarctic populations likely derived from two independent, late‐Pleistocene dispersal events. Both clusters shared haplotypes with sub‐Antarctic South Georgia, suggesting higher connectivity across the Southern Ocean than previously thought. The overall findings of multiple colonization events by a vascular plant species to Antarctica, and the recent timing of these events, are of significance with respect to future colonizations of the Antarctic Peninsula by vascular plants, particularly with predicted increases in ice‐free land in this area. This study fills a significant gap in our knowledge of the age of the contemporary Antarctic terrestrial biota. Adding to previous inferences on the other Antarctic vascular plant species (the grass Deschampsia antarctica), we suggest that both angiosperm species are likely to have arrived on a recent (late‐Pleistocene) time‐scale. While most major groups of Antarctic terrestrial biota include examples of much longer‐term Antarctic persistence, the vascular flora stands out as the first identified terrestrial group that appears to be of recent origin

    Historical biogeography of the Gondwanan freshwater genus Boeckella (Crustacea): Timing and modes of speciation in the Southern Hemisphere

    Get PDF
    We investigated evolutionary relationships and biogeographical patterns within the genus Boeckella to evaluate (1) whether its current widespread distribution in the Southern Hemisphere is due to recent long-distance dispersal or long-term diversification; and (2) the age and origin of sub-Antarctic and Antarctic Boeckella species, with particular focus on the most widely distributed species: Boeckella poppei

    An expert-driven framework for applying eDNA tools to improve biosecurity in the Antarctic

    Get PDF
    Signatories to the Antarctic Treaty System’s Environmental Protocol are committed to preventing incursions of non-native species into Antarctica, but systematic surveillance is rare. Environmental DNA (eDNA) methods provide new opportunities for enhancing detection of non-native species and biosecurity monitoring. To be effective for Antarctic biosecurity, eDNA tests must have appropriate sensitivity and specificity to distinguish non-native from native Antarctic species, and be fit-for-purpose. This requires knowledge of the priority risk species or taxonomic groups for which eDNA surveillance will be informative, validated eDNA assays for those species or groups, and reference DNA sequences for both target non-native and related native Antarctic species. Here, we used an expert elicitation process and decision-by-consensus approach to identify and assess priority biosecurity risks for the Australian Antarctic Program (AAP) in East Antarctica, including identifying high priority non-native species and their potential transport pathways. We determined that the priority targets for biosecurity monitoring were not individual species, but rather broader taxonomic groups such as mussels (Mytilus species), tunicates (Ascidiacea), springtails (Collembola), and grasses (Poaceae). These groups each include multiple species with high risks of introduction to and/or establishment in Antarctica. The most appropriate eDNA methods for the AAP must be capable of detecting a range of species within these high-risk groups (e.g., eDNA metabarcoding). We conclude that the most beneficial Antarctic eDNA biosecurity applications include surveillance of marine species in nearshore environments, terrestrial invertebrates, and biofouling species on vessels visiting Antarctica. An urgent need exists to identify suitable genetic markers for detecting priority species groups, establish baseline terrestrial and marine biodiversity for Antarctic stations, and develop eDNA sampling methods for detecting biofouling organisms

    An expert-driven framework for applying eDNA tools to improve biosecurity in the Antarctic

    Get PDF
    Signatories to the Antarctic Treaty System’s Environmental Protocol are committed to preventing incursions of non-native species into Antarctica, but systematic surveillance is rare. Environmental DNA (eDNA) methods provide new opportunities for enhancing detection of non-native species and biosecurity monitoring. To be effective for Antarctic biosecurity, eDNA tests must have appropriate sensitivity and specificity to distinguish non-native from native Antarctic species, and be fit-for-purpose. This requires knowledge of the priority risk species or taxonomic groups for which eDNA surveillance will be informative, validated eDNA assays for those species or groups, and reference DNA sequences for both target non-native and related native Antarctic species. Here, we used an expert elicitation process and decision-by-consensus approach to identify and assess priority biosecurity risks for the Australian Antarctic Program (AAP) in East Antarctica, including identifying high priority non-native species and their potential transport pathways. We determined that the priority targets for biosecurity monitoring were not individual species, but rather broader taxonomic groups such as mussels (Mytilus species), tunicates (Ascidiacea), springtails (Collembola), and grasses (Poaceae). These groups each include multiple species with high risks of introduction to and/or establishment in Antarctica. The most appropriate eDNA methods for the AAP must be capable of detecting a range of species within these high-risk groups (e.g., eDNA metabarcoding). We conclude that the most beneficial Antarctic eDNA biosecurity applications include surveillance of marine species in nearshore environments, terrestrial invertebrates, and biofouling species on vessels visiting Antarctica. An urgent need exists to identify suitable genetic markers for detecting priority species groups, establish baseline terrestrial and marine biodiversity for Antarctic stations, and develop eDNA sampling methods for detecting biofouling organisms.This work was supported as a Science Innovation Project by the Department of Agriculture, Water and the Environment’s Science Innovation Program funding 2021–22 (project team: A.J.M., L.J.C., D.M.B., C.K.K., J.S.S. and L.S.). Support was also provided (to J.D.S, E.L.J., S.A.R., J.S.S., M.I.S., J.M.S., N.G.W.) from Australian Research Council SRIEAS grant SR200100005. P.C. and K.A.H. are supported by NERC core funding to the BAS Biodiversity, Evolution and Adaptation Team and Environment Office, respectively. L.R.P. and M.G. are supported by Biodiversa ASICS funding

    Threat management priorities for conserving Antarctic biodiversity

    Get PDF
    Antarctic terrestrial biodiversity faces multiple threats, from invasive species to climate change. Yet no large-scale assessments of threat management strategies exist. Applying a structured participatory approach, we demonstrate that existing conservation efforts are insufficient in a changing world, estimating that 65% (at best 37%, at worst 97%) of native terrestrial taxa and land-associated seabirds are likely to decline by 2100 under current trajectories. Emperor penguins are identified as the most vulnerable taxon, followed by other seabirds and dry soil nematodes. We find that implementing 10 key threat management strategies in parallel, at an estimated present-day equivalent annual cost of US$23 million, could benefit up to 84% of Antarctic taxa. Climate change is identified as the most pervasive threat to Antarctic biodiversity and influencing global policy to effectively limit climate change is the most beneficial conservation strategy. However, minimising impacts of human activities and improved planning and management of new infrastructure projects are cost-effective and will help to minimise regional threats. Simultaneous global and regional efforts are critical to secure Antarctic biodiversity for future generations
    corecore